Texas Beach Watch

Texas General Land Office
George P. Bush, Commissioner
1700 N. Congress Avenue
Austin, Texas 78701

Quality Assurance Project Plan

Prepared for

US Environmental Protection Agency, Region 6
Dallas, Texas

Effective
September 2021
MANAGEMENT’S STATEMENT OF APPROVAL

This Quality Assurance Project Plan (QAPP) is specifically designed for the development and implementation of the Texas Beach Watch program, as required by the Beaches Environmental Assessment and Coastal Health Act of 2000. The QAPP specifies the overall project design and Quality Assurance objectives in sufficient detail to ensure program goals are accomplished in a timely, efficient, and cost-effective manner. The implementation of this QAPP will also ensure the environmental data collected is the appropriate type and quality for its intended use.

By our signatures below, we hereby approve this Quality Assurance Project Plan:

Texas General Land Office

Lucy Flores, Project Manager
Coastal Resources Division

Allison Fischer, Quality Assurance Manager,
Coastal Resources Division

Jason Pinchback, Manager
Coastal Resources Division

Melissa Porter, Deputy Director
Coastal Resources Division
MANAGEMENT’S STATEMENT OF APPROVAL

U.S. Environmental Protection Agency

TERESITA MENDIOLA
Digitally signed by TERESITA MENDIOLA
Date: 2021.07.27 10:10:13 -05'00'
Teresita Mendiola, Beach Project Officer
State/Tribal Programs Section

NELLY SMITH
Digitally signed by NELLY SMITH
DN: c=US, o=U.S. Government, ou=Environmental Protection Agency, cn=NELLY SMITH
0.9.2342.19200300.100.1.1=68001003655673
Date: 2021.07.27 14:37:46 -05'00'
Nelly Smith, Chief
State and Tribal Programs Section

Date

Date
DISTRIBUTION LIST

Lucy Flores, Project Manager, Texas Beach Watch, GLO
Allison Fisher, Quality Assurance Officer, GLO
Jason Pinchback, Manager, Coastal Resources Division, GLO
Angela Sunley, Director, Coastal Resources Division, GLO
Melissa Porter, Deputy Director, Coastal Resources Division, GLO
Teresita Mendiola, EPA Project Officer, Project Manager, EPA Region VI
Robert Cook, BEACH Program Coordinator, EPA Region VI
Local Contractors
Local Government Representatives
TABLE OF CONTENTS

MANAGEMENT’S STATEMENT OF APPROVAL ... 2
DISTRIBUTION LIST .. 3
TABLE OF CONTENTS .. 4
LIST OF ACRONYMS ... 6

A. PROJECT MANAGEMENT ... 7

1. **PROJECT / TASK ORGANIZATION** ... 7
2. **PROBLEM DEFINITION / BACKGROUND** ... 7
3. **PROJECT / TASK DESCRIPTION** ... 8
4. **QUALITY OBJECTIVES AND CRITERIA FOR MEASURED DATA** 8
5. **SPECIAL TRAINING / CERTIFICATION** ... 9
6. **DOCUMENTATION AND RECORDS** .. 9

B. DATA GENERATION / ACQUISITION ... 11

1. **SAMPLING PROCESS DESIGN** .. 11
 (a) Sampling Depth .. 12
 (b) Design Assumptions ... 13

2. **SAMPLING METHODS** .. 14
 (a) Procedures for Local Contractors .. 14
 (b) Labeling the Samples ... 17

3. **SAMPLE HANDLING AND CUSTODY REQUIREMENTS** ... 17
4. **ANALYTICAL METHODS REQUIREMENTS** ... 17
5. **QUALITY CONTROL REQUIREMENTS** .. 18
 (a) Specifying Measurement Performance Criteria ... 18

6. **INSTRUMENT TESTING, INSPECTION, MAINTENANCE, CALIBRATION AND FREQUENCY** 20
7. **INSPECTION/Acceptance OF Supplies/Consumables** ... 21
8. **DATA MANAGEMENT** ... 21
 (a) Data Recording ... 21
 (b) Data Validation .. 21

C. ASSESSMENT/OVERSIGHT .. 23
1. ASSESSMENT AND RESPONSE ACTIONS

(a) Assessment Activities and Project Planning

2. DOCUMENTATION OF ASSESSMENTS AND REPORTS TO MANAGEMENT

D. DATA VALIDATION AND USABILITY

1. DATA REVIEW, VALIDATION, AND VERIFICATION REQUIREMENTS

(a) Sampling Design

(b) Sample Collection Procedures

(c) Equipment and Supplies

(d) Sample Handling

(e) Analytical Procedures

(f) Quality Control

(g) Calibration

(h) Data Reduction and Processing

2. VALIDATION AND VERIFICATION METHODS

3. RECONCILIATION WITH USER OBJECTIVES

APPENDIX A

ORGANIZATIONAL CHARTS

APPENDIX B

FIELD OBSERVATION FORM

APPENDIX C

UNIQUE LOCAL CONTRACTOR AND GOVERNMENT CONTACT INFORMATION

APPENDIX D

PROJECT MANAGER SIGNATURE PAGE

APPENDIX E

CONTRACTOR AND DATA REVIEW TEMPLATE
LIST OF ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAV</td>
<td>Beach Action Value</td>
</tr>
<tr>
<td>Coordinator</td>
<td>Beach Watch Project Manager</td>
</tr>
<tr>
<td>COC</td>
<td>Chain of Custody</td>
</tr>
<tr>
<td>DQI</td>
<td>Data Quality Indicators</td>
</tr>
<tr>
<td>EPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>GLO</td>
<td>Texas General Land Office</td>
</tr>
<tr>
<td>GM</td>
<td>Geometric Mean</td>
</tr>
<tr>
<td>QA/QC</td>
<td>Quality Assurance/Quality Control</td>
</tr>
<tr>
<td>QAO</td>
<td>Quality Assurance Officer</td>
</tr>
<tr>
<td>QAP</td>
<td>Quality Assurance Program</td>
</tr>
<tr>
<td>QAPP</td>
<td>Quality Assurance Project Plan</td>
</tr>
<tr>
<td>QMP</td>
<td>Quality Management Plan</td>
</tr>
<tr>
<td>SSMD</td>
<td>Single Sample Maximum Density</td>
</tr>
<tr>
<td>SOP</td>
<td>Standard Operating Procedure</td>
</tr>
<tr>
<td>TBW</td>
<td>Texas Beach Watch</td>
</tr>
<tr>
<td>TCEQ</td>
<td>Texas Commission on Environmental Quality</td>
</tr>
</tbody>
</table>
A. PROJECT MANAGEMENT

1. PROJECT / TASK ORGANIZATION

The Texas General Land Office (GLO) will contract with local governments, universities, and commercial laboratories (local contractors) to collect and analyze water samples. The results of these water samples will be reported to the GLO and the GLO will notify the local government contacts identified in the QAPP (APPENDIX C) and general public of the results.

The Texas Beach Watch Project Manager (Coordinator) will coordinate contracts between the GLO and local contractors, consolidate data submitted, provide program oversight, and maintain the Quality Assurance Project Plan (QAPP). The Texas General Land Office will maintain the Quality Management Plan (QMP) and ensure Quality Assurance/Quality Controls (QA/QC) are in place. An organizational chart of responsible parties is included in APPENDIX A.

2. PROBLEM DEFINITION / BACKGROUND

Growing concerns about the health risks posed by polluted bathing beaches, increased beach closures, and scientific evidence indicating an increase in infectious diseases caused by microbial organisms in recreational waters prompted the EPA to create the National Beaches Environmental Assessment, Closure, and Health (BEACH) Program. The goals of the BEACH Program are to protect public health at the nation’s beaches and to ensure the public is notified when the risk for potential illness and disease is present.

Subsequently, on October 10, 2000, the Beaches Environmental Assessment and Coastal Health Act (BEACH Act), was passed to reduce the risk of disease to users of the nation’s recreational waters. The BEACH Act authorizes EPA to award grants to eligible coastal and Great Lake states and tribes for the development and implementation of programs to monitor coastal recreational waters for disease-causing microorganisms, and to notify the public when monitoring indicates a public health hazard exists. EPA allocated funds in fiscal year 2001 and annually thereafter to help states develop their monitoring programs. To be eligible for implementation grants, states must establish and operate monitoring and notification programs consistent with performance criteria provided in the National Beach Guidance and Required Performance Criteria for Grants, 2014 Edition,(EPA-823-B-14-001, July 31, 2014).
Between 1999 and 2003, prior to the passage of the BEACH Act and the development of the National Beach Guidance and Required Performance Criteria for Grants, the GLO secured and allocated Texas Coastal Management Program (CMP) funds for water quality monitoring at thirteen of the most heavily used beaches in six counties along the Texas coast.

3. PROJECT / TASK DESCRIPTION

This project involves the collection and testing of water quality samples for the presence of Enterococcus bacteria. Local contractors will collect water quality samples using standard collection methods described under Section B, Data Generation and Acquisition, Subsection 2. Sampling Methods, of this QAPP. Local laboratories will analyze the samples and enter results in the Texas Beach Watch (TBW) Program database. The GLO database will be used to compare sample results to an EPA-accepted alternative Beach Action Value (BAV) of 104 cfu/100 ml. When the BAV is exceeded, local government representatives will be notified immediately. Local government representatives may then require signs, warning of elevated bacteria levels, be posted at the affected beaches. In addition, bacteria levels for each sample are posted in near real-time on the TBW program’s website site at http://texasbeachwatch.com/ or http://cgis.glo.texas.gov/Beachwatch/.

In September 2003, pilot implementation of the expanded monitoring program commenced in the six counties previously participating in the CMP funded TBW Program (Jefferson, Galveston, Brazoria, Matagorda, Nueces, and Cameron) and continued through the summer of 2004. Currently, the program monitors water quality at 164 sites located at 61 Texas recreational beaches in nine coastal counties. The identification of the counties and all the monitoring stations are included in APPENDIX C.

APPENDIX C – Unique Local Contractor and Government Contact Information contains specific information for each local contractor including maps and GPS coordinates of sampling locations. As new local contractors are added to the program, Appendix C is updated incorporated into the Work Plan and prior to the new local contractor beginning sampling. Appendix C is also updated when sampling stations are added or deleted. A copy of the QAPP and applicable Appendices are included in all contracts between the GLO and contractors.

4. QUALITY OBJECTIVES AND CRITERIA FOR MEASURED DATA
The goal of this project is to provide the public with information about water quality at recreational beaches. Development and implementation of a water quality monitoring and notification program will meet this goal. Water quality samples will be collected and tested for Enterococcus bacteria and compared to a BAV of 104 colony forming units (cfu)/100 ml. Upon receipt of reliable data, advisories will be recommended when sample results for Enterococcus exceed the BAV. Data is of acceptable quality when it meets the requirements established in the QAPP under Section B, Data Generation and Acquisition, Subsections 5 through 8 and conducted in accordance with the sampling and analytical methods identified in Section B, Subsections 1 through 4.

5. **Special Training / Certification**

All samples will be collected under the supervision of licensed sanitarians or qualified environmental scientists under contract with the Texas General Land Office’s TBW Program, who have been trained to collect samples in accordance with the QAPP and the laboratory’s Standard Operating Procedures (SOP). All laboratory analyses will be conducted at contracted laboratories under the direction of the Project Manager identified in Appendix C.

Staff who enter TBW data will receive training on the proper procedures to enter and validate data by the Project Manager or their designee. Training records will be maintained a minimum of three years or longer, depending on the organization’s retention schedule requirements.

This QAPP is intended to apply to multiple labs using multiple EPA approved techniques (Method 1600 and IDEXX Enterolert) on a regular basis and therefore references laboratory and manufacturer QA/QC requirements for equipment and is more general in nature consistent with the EPA Requirements for Quality Assurance Project Plans (EPA QA/R-5) document, specifically 2.4 General Content And Detail Requirements, 2.4.1 General Content and 2.4.2 Level of Detail.

6. **Documentation and Records**

The contract laboratories will be responsible for maintaining all records related to the collection and analysis of data. These records include Field Observation Forms (APPENDIX B), chain of custody forms, sample analysis forms, individual laboratory QA/QC records, and any other documentation generated. Hard copies and electronic files containing field and laboratory data will be stored for three years. The GLO will not require the submission of hard copies, unless specifically requested. When a contract laboratory ceases to
participate in the Beach Watch Program, all records related to the collection and analysis of data will be provided to the GLO for recordkeeping purposes. The data can be in electronic format or hard copy.

The GLO is responsible for maintaining the TBW Program database and ensuring sample data is maintained and backed up in an electronic format. In addition, the GLO is responsible for submitting annual data results to EPA on or before January 31.
B. DATA GENERATION / ACQUISITION

1. SAMPLING PROCESS DESIGN

Pursuant to the BEACH Act, Texas determined the number of primary and secondary contact recreation gulf and bay beaches along with the corresponding beach miles. Beaches in each county were ranked as primary or secondary contact recreation beaches based on frequency and density of use. Most of the primary contact recreation beaches are located along the Gulf of Mexico. Select beaches along the Gulf of Mexico are ranked as high priority (Tier 1) and sampling of coastal waters will be conducted as sampling costs and funding allows. The most heavily used beaches are located in Galveston, Nueces, and Cameron counties. These counties contain the most sampling stations and the majority of program funding are expensed in these areas.

Data from sample results are used to recommend contact recreation advisories; therefore, the collection and analysis of water samples are classified as critical measurements. Critical measurements are those required to achieve project objectives or limits on decision errors. The project objective seeks to provide the public with information about the water quality at beaches used for contact recreation. One sample will be collected at each sampling station. The sample result is compared to the BAV. The BAV that triggers an advisory and notification is equal to or greater than 104 cfu/100 ml. If the BAV is exceeded, an advisory will be recommended by the GLO and a sample will be collected daily until the sample result is below the BAV. Due to re-sampling logistics, samples may not be collected until 24-48 hours after the initial sample was collected at the monitoring station.

The standard operating procedures (SOPs) for field sampling are described in sequential steps. The SOP also includes information pertaining to specific facilities, equipment, materials and methods, and QA/QC procedures. All local contractors will follow the SOPs described in Part 9000 (Microbial Examination) of *Standard Methods for the Examination of Water and Wastewater* (APHA, AWWA, WEF, 22nd Edition, 2012 or available online: Standard Methods for the Examination of Water and Wastewater at www.standardmethods.org).

The proper collection, preservation, and storage of beach water samples are necessary to reduce analytical errors. Bacteriological samples will be collected in sterile polypropylene bottles with a volume of at least 125 milliliters (ml), but no more than 1000 ml, to allow for adequate sample mixing. To avoid contamination, the collection bottles must remain sealed until immediately prior to sample collection. Initial samples will be collected between sunrise and noon. If results exceed the BAV, local contractors are required to
collect additional samples as soon as possible, typically within two hours once BAV results are available. In practice, re-sampling occurs 24-48 hours after the initial sample was collected at the sampling location. If results are received late in the day, the additional samples may be collected the following morning.

(a) Sampling Depth

EPA's recommendation for all beaches is that samples be taken at knee depth. States and tribes are encouraged to sample at the same depth for all beaches to ensure consistency and comparability among samples. For example, if beach classification changes over time, the samples would remain comparable because of the consistency in sample depth. At Tier 1 beaches, additional samples may be taken as necessary at a particular beach (e.g., waist depth, ankle). However, according to discussions at the 2004 National Beaches Conference, EPA's recommended sampling depth may not be appropriate for samples collected in the swash zone. The swash zone is defined as water one foot deep or less and is the area of water where children, an at-risk population, spend most of their time. In Texas waters, the swash zone usually contains large amounts of sand and sediment due to wave action. Therefore, the TBW program will sample at approximately two feet or knee depth. The two-foot standing depth will apply unless:

- The majority of recreational activity occurs at a depth significantly different from two feet. If this occurs, samples may be collected at the location of greatest swimmer activity; or
- The two-foot standing depth occurs more than 50 meters (164 feet) from shore. If the two-foot sampling depth occurs more than 50 meters from the shore, samples may be collected at 50 meters from shore or at the location of greatest swimmer activity. The distance shall be measured from the approximate water line at the time of sampling.

The numbers of microorganisms in marine water samples are susceptible to rapid change due to growth or death after collection. Therefore, to minimize change, samples will be held for the shortest time possible. Standard protocol dictates holding times will be no longer than eight hours, which is six hours to collect and deliver to a lab and two hours to process. Steps for the preservation and transit of collected water samples will be followed precisely or the sample will not be analyzed, and another sample will be collected. Bacteriological samples will be stored in insulated containers and maintained at a temperature of <10 degrees Celsius as described in section 8.1.2 of Method 1600 (https://www.epa.gov/sites/production/files/2015-
which states in part that "ice or refrigerate water samples at a temperature of \(<10\) degrees Celsius during transit to the laboratory."

(b) Design Assumptions

When more than one sampling station exists on a beach, the sampling stations will be spaced approximately 500 meters (500 meters = 1640.42 feet). However, due to the variability of Gulf beach public access points, the 500-meter spacing may not be practicable. The majority of recreational beach users congregate around public access points; therefore, samples will be collected near access points.

Sample locations are included as part of the individual appendices for each local contractor. As counties are added to the TBW program, appendices will be added to document sampling locations, contact information, and any other information specific to each county.

Samples will be collected weekly during the beach season (currently May-September) and biweekly during the off-season (October-April). Circumstances may dictate modifications to sampling time and frequency for certain beaches. For example, March sampling activities will be conducted weekly at Tier 1 beaches to account for the increase in the number of tourists visiting during spring break. Other conditions, such as safety concerns, budgetary constraints, data anomalies, and/or unique natural or anthropogenic events may cause alterations to routine sample collection schedules.

Monday is the preferred sample collection day. Tuesday and Wednesday are alternate sample collection days. Re-sampling should occur 24 hours after the original sample collection or at the soonest practicable time, which is typically within a 48-hour time period. This schedule allows time for re-sampling to occur, before the next regular sampling period, when elevated bacteria levels are detected. Depending on the number of beaches, stations, and travel distance, local contractors may require several days to collect samples.

The local contractor’s field personnel document rainfall and tidal information on the Field Observation Form (Appendix B) to explain sample collection difficulties (for example: the current was too strong to enter the water safely). If a sample cannot be collected according to the sampling schedule, field personnel will collect the samples as soon as possible to ensure re-sampling can be conducted, if necessary, prior to the next sampling period. If sampling cannot be conducted during the required period, the local contractor must inform the Coordinator during that sampling period. Additionally, contractors should keep a log of all delayed and uncollected samples with date, location, reason for deviation from sampling protocols, and who was notified.
Samples must be processed as soon as possible after collection, so the holding time limit does not exceed six hours between collection and initiation of sample analyses.

The TBW program contracted laboratories will be required to analyze samples weekly and notify the Coordinator by entering sample results into the TBW program’s database within two hours. The database generates detailed email notifications to all interested parties designated by the Coordinator.

2. SAMPLING METHODS

(a) Procedures for Local Contractors

The following procedures for sampling are based upon text taken from Part II, Section A, of the EPA publication "Microbiological Methods for Monitoring the Environment: Water and Wastes" EPA-600/8-78-017, December 1978 (https://nepis.epa.gov/Exe/ZyPDF.cgi/300014TD.PDF?Dockey=300014TD.PDF).

- Identify the sampling site on a chain of custody tag, if required, or on the bottle label and on a field log sheet.
- Enter specific details to identify the sample on a permanent label. Take care in transcribing sampling information to the label. The label should be clean, waterproof, non-smearing, and large enough for the necessary information. The label must be securely attached to the sample bottle but removable when necessary. Preprinting standard information on the label can save time in the field. The marking pen or other device must be non-smearing and maintain a permanent legible mark.
- Field staff will disinfect hands and then wear sterile gloves prior to handling sampling equipment or conducting sample collection. Remove the bottle covering and closure just before obtaining each sample and protect them from contamination. Be careful not to touch the inside of the bottle itself or the inside of the cover. Sample bottles will be obtained from the laboratory conducting the analysis.
- The first sample to be prepared is the trip blank (at least one per sampling day for routine sampling is recommended). Open the sampling bottle and fill it with 100 ml of sterile buffered dilution solution when collecting freshwater, estuarine, or marine water samples. Cap the bottle and place it in a cooler. The trip blank will be used to verify samples have been maintained at the correct temperature for transportation. Sterile buffered solution will be obtained from the laboratory conducting the analysis.
To collect the water samples, carefully move to the first sampling location. If wading in the water, try to avoid kicking up bottom material at the sampling station. The sampler should be positioned downstream of any water current to take the sample from the incoming flow. Samples shall be collected in approximately two feet of water.

Open a sampling bottle, grasp it at the base with one hand, and plunge the bottle mouth downward into the water to avoid introducing surface scum. Position the mouth of the bottle into the current away from the hand of the sampler. The sampling depth should be 15 to 30 centimeters (6 to 12 inches) below the water surface, depending on the depth from which the sample must be taken. Samples collected in less than the two-foot standing depth will collect the sample at the 15-centimeter (six inch) sampling depth to avoid the collection of sedimentation. Allow time for sediment settling prior to collecting the sample. If the water body is static, an artificial current can be created by moving the bottle horizontally with the direction of the bottle pointed away from the sampler. Tip the bottle slightly upward to allow air to exit and the bottle to fill.

Remove the bottle from the water body.

Due to fine sediment at certain monitoring locations and the potential for fine suspended sediments to be collected during sampling, the use of a sampling (extension) pole (pictured in Appendix F) may be utilized to facilitate collection of water outside of the sediment plume caused by sampling personnel. If employed at these sites, the sterile sample bottle will be attached to the pole using a reusable cable tie or elastic band. Using the extension pole, the bottle will be inverted, and the sample will be collected in the same manner as if collected by hand. The sample pole will be rinsed with ambient water at each site prior to use. Additionally, notes will be made on the sample collection sheet to identify which samples were collected using the pole method.

- Procedures when using the sampling pole:
 - With the lid and seal still in place, affix the sample bottle to the receiving carriage on the sampling pole using a reusable cable tie or elastic band. Remove the bottle covering and closure just before obtaining each sample and protect them from contamination. Be careful not to touch the inside of the bottle itself or the inside of the cover.
Using the pole, invert the sampling bottle and plunge the bottle mouth downward into the water to avoid introducing surface scum. Position the mouth of the bottle into the current away from the hand of the sampler. The sampling depth should be 15 to 30 centimeters (6 to 12 inches) below the water surface, depending on the depth from which the sample must be taken. Samples collected in less than the two-foot standing depth will collect the sample at the 15-centimeter (six inch) sampling depth to avoid the collection of sedimentation. Allow time for sediment settling prior to collecting the sample. If the water body is static, an artificial current can be created by moving the bottle horizontally with the direction of the bottle pointed away from the sampler. Tip the bottle slightly upward to allow air to exit and the bottle to fill.

- Pour out a small portion of the sample to allow an air space of 2.5 centimeters (1 to 2 inches) above each sample for proper mixing of the sample before analysis. If the bottle contains any debris or excessive sediment/sand, a new sample and bottle must be used to resample. Discard the original water sample.
- Tightly close the lid and label the bottle.
- Complete a Field Observation Form for each beach to record the full details on sampling and other pertinent remarks, such as flooding, rain, or extreme temperature, that are relevant to interpretation of the results. This record also provides a back-up record of sample identification.
- Place the samples in a suitable container and transport them to the laboratory as soon as possible. Adhering to sample preservation and holding time limits is critical to the production of valid data. Bacteriological samples should be iced or refrigerated at <10°C during transit to the laboratory. Use insulated containers such as plastic or Styrofoam coolers, if possible, to ensure proper maintenance of storage temperature. Insulated containers should be filled with enough ice to cover samples, not icepacks, to ensure samples maintain proper temperature after sample collections and during transportation. Take care to ensure sample bottles are not totally immersed in water during transit or storage. Process samples as soon as possible after collection. Do not hold samples longer than six hours between collection and initiation of analysis (US Environmental Protection Agency, 2000). Do not analyze samples that exceed holding time limits.
• Collect water samples for analyses of other parameters in separate appropriate containers at the same time and perform analyses as specified in the particular methods.

• After collecting samples from a station, wash hands and arms with alcohol wipes, a disinfectant lotion, or soap and water, and dry to reduce exposure to potentially harmful bacteria or other microorganisms.

(b) Labeling the Samples

Each sample bottle shall be labeled with the following information:

• Date and time of sample collection
• Sampler’s name
• Sample letters and station number (If more than one sample is collected at a station, identify the first sample with the letter “A” after the station number, the second sample with the letter “B” and so forth).
 o Information will be labeled prior to sample collection.

Samples must be processed as soon as possible after collection, so the holding time limit does not exceed six hours between collection and initiation of sample analyses. Samples will only be delivered to TBW program contracted laboratories.

3. SAMPLE HANDLING AND CUSTODY REQUIREMENTS

Chain of Custody (COC) procedures will be followed when samples are collected, transferred, stored, and analyzed. The local contractor’s staff will follow sampling protocol and deliver samples directly to a TBW program contracted laboratory for analysis.

When samples are delivered to the laboratory, the local contractor and laboratory staff will complete COC records required by the laboratory.

4. ANALYTICAL METHODS REQUIREMENTS

method for each local contractor is addressed by County in Appendix C, Unique Local Contractor Information.

5. Quality Control Requirements

Local contractors monitor coastal beach water quality. It is the responsibility of the local contractor’s Project Manager to ensure field staff are properly trained and routinely monitored for compliance with established protocols. The Project Manager will also be responsible for periodically verifying the completeness of field sampling records prior to data entry.

The field technician will be responsible for sample handling and custody requirements for each sample collected and transferred to the laboratory.

The TBW program database was developed to meet requirements of the BEACH Act. The database and Web-based data entry form were designed to minimize the possibility of data entry errors. The Coordinator will periodically review and evaluate results entered into the database.

The TBW program will conduct an annual review of at least one local contractors’ records and field sampling techniques to evaluate training methods and documentation procedures. This review may be conducted as a “desktop” review; via email, conference calls, or; an on-site field review. The review will include an assessment of the local contractor's adherence to the criteria contained in the QAPP. Informal reviews of any laboratory may be conducted during the year.

(a) Specifying Measurement Performance Criteria

Performance criteria or Data Quality Indicators (DQIs) are qualitative and quantitative descriptors used to interpret the degree of acceptability, or utility of the data. The principal DQIs include precision, bias, representativeness, comparability, and completeness. Precision and bias are quantitative measures. Representativeness and comparability are qualitative measures, and completeness constitutes both a quantitative and qualitative measure.

Precision is the measure of agreement among replicate measurements of the same property, under prescribed similar conditions. Local contractors will estimate field precision through the sequential collection and measurement of two samples, 5% of the time. For every 20 stations sampled, a second sample will be collected for comparison to the first sample. The two samples will be used to calculate the relative percent difference described below. When collected, the second sample will be entered into the database.
and used to calculate the station average. Field personnel will assess precision on a regular basis to determine sampling performance. The 5% precision criteria requirement is considered to be an annual average.

The precision of laboratory analyses is estimated by analyzing two or more aliquots (duplicates) of the same water sample. The precision analysis procedures used by a laboratory are included in each local contractor’s QA/QC plan. QA/QC is assessed in the laboratory on a regular basis and the laboratory shall maintain records of the assessment.

The precision DQI is obtained from two duplicate samples by calculating the relative percent difference (RPD) as follows:

\[
\text{RPD} = \left(\frac{|C1-C2|}{(C1+C2)/2} \right) \times 100\%
\]

C1 is the first of the two values and C2 is the second value. An RPD of less than or equal to 60 percent between field duplicates microbiological analyses could be considered acceptable because of the heterogeneity of bacteria populations in surface waters. When laboratory duplicates are analyzed, precision of the test will be expressed in terms of standard deviation and the ability to detect the target organism. Analysts should duplicate bacterial colony counts on the same membrane within five percent, and other analysts’ counts within ten percent; otherwise, procedures should be reviewed and corrective action implemented.

Bias - is the systematic or persistent distortion of a measurement process that causes errors in one direction (USEPA 2002a). Bias assessments for environmental measurements are typically based on analysis of spiked samples, which is not feasible for microbiological samples. It is assumed bias will be minimized in this study by close adherence to SOPs and QA plans.

Accuracy - is the degree of agreement between an observed value and an accepted reference or true value. Accuracy is a combination of random error (precision) and systematic error (bias), both of which are due to sampling and analytical operations (USEPA 2002a). Accuracy is estimated by comparing the measured value to its “true” value. Because microbiological analysis measures constantly changing living populations, the true values cannot be known.

Accordingly, accuracy, like bias, is difficult to assess for microbiological analyses. However, because indicator organism density estimates are assumed to have minimum bias, accuracy equates to precision, which will be rigorously assessed.
Representativeness, comparability, and completeness are of particular concern to field sampling staff. Representativeness is the degree to which data accurately and precisely represents the characteristics of a population. One method for ensuring representativeness includes the evaluation of the sampling design to determine whether the sampled area is typical and representative of each area of concern. The TBW program ensures representativeness by sampling coastal waters near beaches used for public recreation.

Comparability is the qualitative term that expresses the confidence two data sets contribute to a common analysis and interpolation. Comparability must be evaluated carefully to establish whether two data sets can be considered equivalent with regard to the measurement of a specific variable or groups of variables. In laboratory analyses, the term comparability focuses on method type comparison, holding times, stability issues, and aspects of overall analytical quantitation. Sampling based on similar geographic and seasonal characteristics; adequate training of field sampling and laboratory personnel and the use of standardized sampling and analysis methods ensure comparability.

Completeness is a measure of the amount of valid data obtained from a measurement system. Completeness is expressed as a percent of the number of valid measurements that should have been collected (i.e., measurements planned for collection). Every effort is made to avoid sample and/or data loss through accidents.

Percent completeness (%C) for measurement parameters is defined as follows:

\[\%C = \frac{v}{T} \times 100 \]

Where, \(v \) = the number of measurements judged valid and \(T \) = the total number of measurements. To recommend an advisory, the TBW program requires one sample be collected at a given site. The result is compared to the standard criteria to determine if an advisory is warranted. The sample collected at the site must be deemed valid prior to an advisory being recommended. The completeness goal for valid decisions at each site is 100%. The TBW program database includes measures to prevent the omission of data necessary to ensure the completeness measure.

6. **Instrument Testing, Inspection, Maintenance, Calibration and Frequency**

Testing, inspection, maintenance, and calibration of laboratory equipment will be conducted according to laboratory QA/QC manuals, and as specified by the equipment manufacturer.
Local contractors employing the IDEXX Enterolert™ system for enumerating *Enterococcus* may require special equipment including the IDEXX Quanti-Tray® Sealer with insert along with the required supplies.

7. **Inspection/Acceptance of Supplies/Consumables**

Project Managers will be responsible for ensuring all supplies and consumables are appropriate and acceptable. The TBW program requires all samples to be collected in sterilized polypropylene bottles with a volume of at least 125 milliliters (ml), but no more than 1000 ml. In addition, laboratories will not accept collection containers if the individual containers or the delivery container are not properly closed or sealed.

Laboratories that re-use sample bottles should make sure the decontamination procedures are readily available at the lab and consistent with the practices identified in “EPA Method 1600, Appendix A”; thoroughly clean with detergent and hot water, hot water rinse conducted to remove all trace amounts of detergent, and triple rinse with laboratory pure water.

8. **Data Management**

(a) **Data Recording**

Water quality results are entered into the TBW program database via the Web. The TBW program will assess the data for completeness and errors on a periodic basis. The Project Manager will be notified of discrepancies by email or fax as soon as practicable. The nature of the data and the subsequent analyses must be consistent to allow data sets to be compared.

(b) **Data Validation**

Data will be validated and verified based on the following factors:

- Completeness of data;
- Adherence to proper sample preservation, transport, and handling protocols;
- Proper sample collection procedures;
- Proper quality control criteria;
- Documentation of all data (including QC data);
• Ability to reconstruct field sampling procedures through documentation and records;
• Ability to trace data to specific sampling sites, dates, and times; and
• Appropriateness of the data based on specific data quality objectives / indicators.

Laboratory verification procedures will be outlined for each laboratory in their QA/QC manual, guidance, or procedural documentation. Validation confirms that requirements for specific intended uses have been fulfilled and that data is systematically examined to determine technical usability with respect to planned objectives. Project Managers or their designees are responsible for reviewing field-sampling reports before data is entered in the system.
C. ASSESSMENT/OVERIGHT

1. ASSESSMENT AND RESPONSE ACTIONS

(a) Assessment Activities and Project Planning

The Coordinator is responsible for the preliminary assessment and oversight of the program, including contract management procedures for the allocation of BEACH Act funds to local contractors. Additionally, the Coordinator will periodically review data submitted to the TBW program database to identify possible trends and to ensure QAPP requirements are met. QA assessment results, to include RPD calculations of replicate samples, will be reported to EPA on an annual basis (in every other semiannual report) as required by the cooperative agreement between EPA and the GLO.

GLO will perform at least one annual review of a local contractor’s laboratory to ensure their protocols are consistent with the QAPP. This review may be conducted as a “desktop” review; via email, conference calls, or an on-site field review. If the review finds a local contractor not adhering to the QAPP, these deviations will be documented in the review summary. The local contractor will be required to take corrective action to address the deficiency, including written correspondence documenting plans to prevent future deviations from this QAPP. Failure to do so will result in possible financial penalties (withholding of payment until corrected) or termination of contract.

2. DOCUMENTATION OF ASSESSMENTS AND REPORTS TO MANAGEMENT

Data quality will be assessed as part of an annual review to ensure adherence to this QAPP. The Contractor and Data Review template (Appendix E) will be completed by the Quality Assurance Officer or Coordinator to document the results of the review. Deviations documented in the review will require the local contractor to implement and document corrective actions, which will be saved in the local contractor’s data file. This information will be included in semiannual reports to EPA. Supplemental reports will be submitted as warranted.
D. DATA VALIDATION AND USABILITY

1. DATA REVIEW, VALIDATION, AND VERIFICATION REQUIREMENTS

(a) Sampling Design

Changes to sampling location and/or frequency of sampling will occur on a yearly basis or as needed and will be documented in Appendix C. In addition, as new local contractors are added to the TBW program, Appendix C will be updated to include new site locations, in order of importance, frequency of sampling, number of stations per beach, site maps of all beaches and stations, contact information and other relevant information.

(b) Sample Collection Procedures

Samples must be collected according to the protocol described in Section B, Data Generation and Acquisition, Subsection 2, Sampling Methods, of the QAPP. If sampling protocol is not followed, the samples will not be analyzed, and replacement samples will be collected according to protocol.

(c) Equipment and Supplies

Sample bottles used in the collection of samples will be collected in bottles containing sodium thiosulfate as required in both Method 1600 and in the Enterolert method.

(d) Sample Handling

Project Managers will routinely check storage containers to ensure samples are stored and transported under conditions that will not adversely affect sample quality. Chain of custody documentation will be conducted according to each local contractor’s QA/QC procedures. If samples are not handled properly, laboratories shall refuse the samples and collection of replacement samples will be required.

(e) Analytical Procedures

TBW program contracted laboratories must have the capability to analyze samples weekly. Laboratory staff must be qualified to use the required instruments and must be familiar with techniques necessary to analyze water quality samples. Laboratory SOPs related to COC, instrumentation, and technique are provided in laboratory QA/QC manuals.
Laboratory personnel will utilize EPA Method 1600\(^1\) or the IDEXX Enterolert™ for the detection of *Enterococci*. Laboratory supervisors may request copies from the EPA’s National Service Center for Environmental Publications (http://www.epa.gov/ncepihom). The Method 1600 document is also available at http://www.epa.gov/waterscience/methods/. Information pertaining to Enterolert™ may be found at http://www.idexx.com/water/enterolert/.

(f) **Quality Control**

Sampling quality control measures will be applied as discussed in Section B, Data Generation and Acquisition, Subsection 5, Quality Control Requirements, while laboratory quality control activities will be conducted according to the laboratory’s QA/QC manual.

(g) **Calibration**

Instruments will be calibrated according to the laboratory’s QA/QC manual and as recommended by the manufacturer. Data not conforming to sampling protocols or laboratory handling and analysis protocols will not be used. Laboratory analysis protocols include the calibration and verification of instruments to manufacturer and/or method specifications.

(h) **Data Reduction and Processing**

Loss of detail in data will be avoided by periodically reviewing the data entered and by following procedures for data reduction and processing activities described in the laboratory’s QA/QC manual.

2. **Validation and Verification Methods**

Validation and verification activities will be performed during annual reviews of a local contractor and as described in Section B, Data Generation and Acquisition, Subsection 8, Data Management, and the laboratory’s QA/QC manual. The local contractor maintains and reviews sampling and analytical data as the data is generated.

The GLO will assess and review the online data submitted on a monthly basis. The assessment activities will include the continual or frequent monitoring of the status of a project and the analysis of records to ensure specified requirements are being fulfilled. Key project personnel (Project Managers) are responsible for surveillance of the program.

under their control; however, the TBW Coordinator monitors data entry through the various queries that generate Summary Reports in EPA’s Monitoring and Notification Databases. These Summary Reports in addition to Summary Reports generated for billing comparisons will be used for validation and verification of data entered by the Contractors. Any corrective action taken to remedy deficiencies will be documented.

3. **Reconciliation with User Objectives**

The TBW program is designed to support the intended use of results through the compilation of water quality data. The TBW program will analyze data for correlation between environmental factors and water quality results to determine the feasibility of predictive models.

If serious deficiencies are noted in data quality, the data may be reported to EPA with an appropriate data qualifier or not reported with an explanation. The data qualifier will be identified in the Monitoring Database, Activity table comments field. The appropriate action will be performed in consultation with EPA Region 6 personnel.

If serious discrepancies are noted, appropriate action may include the cessation of advisories until the deficiency is resolved. The resolution will consist of written communication to address and identify a solution and implement correction action. A follow up lab visit may be conducted.
APPENDIX A

ORGANIZATIONAL CHARTS
APPENDIX B

FIELD OBSERVATION FORM
Texas Beach Watch Field Observation Form

Date: ________________________________

Field Staff Name: ____________________ Beach Name: ________________________________

Sampling location(s): ___

Time Samples Collected: Start: __________ Finish: __________

Time Samples Delivered to Lab: __________ Collection Depth: __________

SITE CONDITIONS:

Contact Recreation Observed: Yes ______ No ______ Number of People: ______

If yes, Heavy: __________ Moderate: __________ Light: __________

Wind: Calm ______ Slight Breeze ______ Moderate Breeze ______ Windy ______

Weather: Clear ______ Partly Cloudy ______ Overcast ______ Rainy ______ Drizzle ______ Fog ______

Wind Direction: N ______ NE ______ E ______ SE ______ S ______ SW ______ W ______ NW ______

Air Temperature: ____________________ Water Temperature: ________________________

Rainfall: Last 7 days: __________ Last 3 days: ______ Last 24 hours: ______

Tidal Stage: Flooding ______ High Slack ______ Ebbing ______ Low Slack ______

Water Surface: Calm ______ Ripples ______ Chop ______ Swells ______ Other ______

Green-Brown ______ Green ______ Yellow-Brown ______ Other ______

Smell: Sewage ______ Oily ______ Fishy ______ Rotten Egg ______ None ______

Beach Debris: Dead Fish ______ Algae ______ None ______

Sargassum: Heavy: ______ Moderate: ______ Light: ______ Other: _______________________

Signage is present Yes ______ No ______ and appropriately positioned Yes ______ No ______

General Comments (including observations of domestic animals and wildlife):

__

__

__
APPENDIX C

UNIQUE LOCAL CONTRACTOR AND GOVERNMENT CONTACT INFORMATION
Aransas County's most popular beach is the Rockport Beach Park in the City of Rockport. The Beach Watch program samples at four locations at this one beach.

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Station Name</th>
<th>Beach Name</th>
<th>Beach ID</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARA001</td>
<td>Rockport Beach Park South</td>
<td>Rockport Beach Park</td>
<td>TX748844</td>
<td>28.02859</td>
<td>-97.04233</td>
</tr>
<tr>
<td>ARA002</td>
<td>Rockport Beach Park North</td>
<td>Rockport Beach Park</td>
<td>TX748844</td>
<td>28.0302</td>
<td>-97.03763</td>
</tr>
<tr>
<td>ARA003</td>
<td>Rockport Saltwater Pool</td>
<td>Rockport Beach Park</td>
<td>TX748844</td>
<td>28.03251</td>
<td>-97.03215</td>
</tr>
<tr>
<td>Station ID</td>
<td>Station Name</td>
<td>Beach Name</td>
<td>Beach ID</td>
<td>Latitude</td>
<td>Longitude</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>ARA004</td>
<td>Little Bay Ski Basin</td>
<td>Rockport Beach Park</td>
<td>TX748844</td>
<td>28.03064</td>
<td>-97.03961</td>
</tr>
</tbody>
</table>
Local Entity/Contractor

ATC Group Services LLC
3626 Westchase Drive
Houston, TX 77042
(713)-343-4483
(713)-977-1963 – Fax

Laboratory

EMSL Laboratories - Houston
3626 Westchase Drive
Houston, TX 77040
(713)-686-3635
houstonlab@emsl.com

Local Government Contacts

Cathy Sbrusch, RN, BSN, CIC
Health Services Director
Brazoria County Health Department
432 E. Mulberry
Angleton, TX 77515-4736
(979) 864-1484
(979) 864-1456 – Fax
cathys@brazoria-county.com

Bryan Frazier, Director
Brazoria County Parks Department
313 W. Mulberry
Angleton, TX 77515
(979) 235-9927
bryantbrazoria-county.com

Lydia Garcia, Park Planning & Development Specialist
Brazoria County Parks Department
313 W. Mulberry
Angleton, TX 77515
(979) 864-1541
lydiag@brazoria-county.com

Project Manager

Timothy L. Craft, Project Manager
ATC Group Services, LLC - Houston
3626 Westchase Drive
Houston, TX 77042
(713)-360-8029
(713)-977-1963 – Fax
tim.craft@atcgs.com

Analysis Method

Enterolert™
BRAZORIA COUNTY

Local Government Contacts
Patty Brinkmeyer, Park Manager
Quintana Beach County Park
330 5th Street
Quintana, TX 77541
979-233-1461
800-872-7578
quintana@brazoria-county.com
pattyb@brazoria-county.com

Brazoria County has four beaches with 16 stations that are sampled. The beaches are southwest of the Freeport ship channel (near the Town of Quintana), the Village of Surfside Beach, and the beaches northeast of Surfside Beach. These 16 stations cover the most heavily used portions of the beaches while providing sufficient coverage to be indicative of the water quality of the beaches.

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Station Name</th>
<th>Beach Name</th>
<th>Beach ID</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRA002</td>
<td>CR750</td>
<td>Bryan Beach</td>
<td>TX384318</td>
<td>28.91181</td>
<td>-95.33507</td>
</tr>
<tr>
<td>BRA004</td>
<td>8th Street</td>
<td>Quintana</td>
<td>TX728060</td>
<td>28.93033</td>
<td>-95.30697</td>
</tr>
<tr>
<td>BRA005</td>
<td>Quintana Beach County Park</td>
<td>Quintana</td>
<td>TX728060</td>
<td>28.93349</td>
<td>-95.30103</td>
</tr>
<tr>
<td>BRA006</td>
<td>Surfside Jetty County Park</td>
<td>Surfside</td>
<td>TX647885</td>
<td>28.93787</td>
<td>-95.29501</td>
</tr>
<tr>
<td>BRA007</td>
<td>Surfside - 9th Street</td>
<td>Surfside</td>
<td>TX647885</td>
<td>28.94245</td>
<td>-95.29159</td>
</tr>
<tr>
<td>BRA008</td>
<td>Beach Drive</td>
<td>Surfside</td>
<td>TX647885</td>
<td>28.94966</td>
<td>-95.28485</td>
</tr>
<tr>
<td>BRA009</td>
<td>Surfside - 2nd Drive</td>
<td>Surfside</td>
<td>TX647885</td>
<td>28.95444</td>
<td>-95.27985</td>
</tr>
<tr>
<td>BRA010</td>
<td>Surfside Beach Recreational Area</td>
<td>Surfside</td>
<td>TX647885</td>
<td>28.96047</td>
<td>-95.27314</td>
</tr>
<tr>
<td>BRA011</td>
<td>Stahlman Park</td>
<td>Surfside</td>
<td>TX647885</td>
<td>28.97099</td>
<td>-95.26106</td>
</tr>
<tr>
<td>BRA012</td>
<td>Bay St.</td>
<td>Surfside</td>
<td>TX647885</td>
<td>28.97241</td>
<td>-95.25935</td>
</tr>
<tr>
<td>BRA013</td>
<td>Stanek Dr.</td>
<td>Surfside</td>
<td>TX647885</td>
<td>28.97781</td>
<td>-95.25297</td>
</tr>
<tr>
<td>BRA014</td>
<td>CR 257A-S</td>
<td>Follets Island</td>
<td>TX646145</td>
<td>28.98987</td>
<td>-95.23758</td>
</tr>
<tr>
<td>BRA015</td>
<td>County Road 257A+</td>
<td>County Road 257F</td>
<td>TX646145</td>
<td>28.99308</td>
<td>-95.23327</td>
</tr>
<tr>
<td>BRA016</td>
<td>County Road 257K</td>
<td>County Road 257F</td>
<td>TX646145</td>
<td>29.00465</td>
<td>-95.21726</td>
</tr>
<tr>
<td>BRA017</td>
<td>County Road 257S</td>
<td>County Road 257F</td>
<td>TX646145</td>
<td>29.04439</td>
<td>-95.16064</td>
</tr>
<tr>
<td>BRA018</td>
<td>County Road 257</td>
<td>County Road 257F</td>
<td>TX646145</td>
<td>29.05603</td>
<td>-95.14367</td>
</tr>
</tbody>
</table>
CAMERON COUNTY

Local Entity/Contractor
The University of Texas – Rio Grande Valley
Coastal Studies Lab
33363 Marine Lab Drive
South Padre Island, TX 78597
(956) 761-2644
http://www.utrgv.edu/csl

Analysis Method
Enterolert™

Laboratory/Field Technician
Eberto Presas
The University of Texas – Rio Grande Valley
Coastal Studies Laboratory
33363 Marine Lab Drive
South Padre Island, TX 78597
(956) 761-2644
Eberto.presas@utrgv.edu

Local Government Contacts
Joe E. Vega, Director
Cameron County Parks Department
33174 Park Road 100-South
South Padre Island, TX 78597-2106
(956) 761-3700
JEVega@co.cameron.tx.us
http://www.co.cameron.tx.us/parks/index.htm

Dr. Emilie Prot DO, MPH Regional Medical Director
Texas Department of State Health Services, Region 11
601 West Sesame Drive
Harlingen, Texas 78550,
(956) 423-0130
(956) 444-3298 – Fax
(956) 444-3202
emilie.prot@dshs.state.tx.us

Esmeralda Guajardo, MAHS, Health Administrator
Cameron County Health and Human Services 1390
West Expressway 83
San Benito, Texas 78586
(956) 247-3685
(956) 361-8261 – Fax
EGuajardo@co.cameron.tx.us
http://www.co.cameron.tx.us/health/index.html

Project Manager
Dr. Hudson Deyoe, Principal Investigator-
Texas Beach Watch/ Professor
The University of Texas Rio Grande Valley
Coastal Studies Laboratory
33363 Marine Lab Drive
South Padre Island, TX 78597
(956) 665-3538
(956) 494-7603 - Mobile
Hudson.deyoe@utrgv.edu

Quality Assurance Manager
Shelby Bessette
The University of Texas Rio Grande Valley
Coastal Studies Laboratory
33363 Marine Lab Drive
South Padre Island, TX 78597
(956) 761-2644
Shelby.bessette@utrgv.edu

Kristina Boburka,
Coastal Resource Manager
City of South Padre Island
4601 Padre Blvd.
South Padre Island, TX 78597
(956)-761-3837
Fax (956) 761-3898
kboburka@myspi.org
www.myspi.org

Randy Smith, City Manager
City of South Padre Island
4501 Padre Blvd.
South Padre Island, TX 78597
(956) 761-8108
(956) 761-3888 - Fax
RSmith@MySPI.org
Cameron County has eight beaches that are sampled. These areas are Boca Chica State Park near Brownsville, Isla Blanca County Park south of the town limits of the City of South Padre Island, the town itself, the beaches north of the town limits and a beach located on the bay side of the island. Twenty-six stations will be monitored. These 26 stations cover the most heavily used portions of the beaches while providing sufficient coverage to be indicative of the water quality of the beaches.

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Station Name</th>
<th>Beach Name</th>
<th>Beach ID</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAM001</td>
<td>Boca Chica State Park #1</td>
<td>Boca Chica State Park</td>
<td>TX714667</td>
<td>25.98919</td>
<td>-97.14941</td>
</tr>
<tr>
<td>CAM002</td>
<td>Boca Chica State Park #2</td>
<td>Boca Chica State Park</td>
<td>TX714667</td>
<td>25.993</td>
<td>-97.14995</td>
</tr>
<tr>
<td>CAM003</td>
<td>Boca Chica State Park #3</td>
<td>Boca Chica State Park</td>
<td>TX714667</td>
<td>25.9967</td>
<td>-97.15021</td>
</tr>
<tr>
<td>CAM004</td>
<td>Boca Chica State Park #4</td>
<td>Boca Chica State Park</td>
<td>TX714667</td>
<td>26.00035</td>
<td>-97.1503</td>
</tr>
<tr>
<td>CAM005</td>
<td>Boca Chica State Park #5</td>
<td>Boca Chica State Park</td>
<td>TX714667</td>
<td>26.00414</td>
<td>-97.15086</td>
</tr>
<tr>
<td>CAM006</td>
<td>Boca Chica State Park #6</td>
<td>Boca Chica State Park</td>
<td>TX714667</td>
<td>26.00774</td>
<td>-97.15103</td>
</tr>
<tr>
<td>CAM007</td>
<td>Isla Blanca Park</td>
<td>Isla Blanca Park</td>
<td>TX137781</td>
<td>26.06953</td>
<td>-97.15501</td>
</tr>
<tr>
<td>CAM008</td>
<td>Isla Blanca Park</td>
<td>Isla Blanca Park</td>
<td>TX137781</td>
<td>26.07558</td>
<td>-97.15745</td>
</tr>
<tr>
<td>CAM010</td>
<td>SPI – Pearl South Padre Hotel</td>
<td>South Padre Island</td>
<td>TX868582</td>
<td>26.08298</td>
<td>-97.15905</td>
</tr>
<tr>
<td>CAM011</td>
<td>SPI - Harbor</td>
<td>South Padre Island</td>
<td>TX868582</td>
<td>26.09518</td>
<td>-97.16194</td>
</tr>
<tr>
<td>CAM012</td>
<td>SPI - Beach Circle</td>
<td>South Padre Island</td>
<td>TX868582</td>
<td>26.09968</td>
<td>-97.16254</td>
</tr>
<tr>
<td>CAM013</td>
<td>SPI - Seaside</td>
<td>South Padre Island</td>
<td>TX868582</td>
<td>26.10261</td>
<td>-97.16311</td>
</tr>
<tr>
<td>CAM014</td>
<td>SPI - Blue Water</td>
<td>South Padre Island</td>
<td>TX868582</td>
<td>26.10672</td>
<td>-97.16369</td>
</tr>
<tr>
<td>CAM016</td>
<td>SPI - Bougainvillea</td>
<td>South Padre Island</td>
<td>TX868582</td>
<td>26.11475</td>
<td>-97.16492</td>
</tr>
<tr>
<td>CAM017</td>
<td>SPI - Starlight</td>
<td>South Padre Island</td>
<td>TX868582</td>
<td>26.11924</td>
<td>-97.16551</td>
</tr>
<tr>
<td>CAM019</td>
<td>SPI - Fantasy</td>
<td>South Padre Island</td>
<td>TX868582</td>
<td>26.12817</td>
<td>-97.16688</td>
</tr>
<tr>
<td>CAM021</td>
<td>Andy Bowie Park - South Pavilion</td>
<td>Andy Bowie Park</td>
<td>TX967170</td>
<td>26.14019</td>
<td>-97.16885</td>
</tr>
<tr>
<td>CAM022</td>
<td>Andy Bowie Park - North Pavilion</td>
<td>Andy Bowie Park</td>
<td>TX967170</td>
<td>26.14221</td>
<td>-97.16892</td>
</tr>
<tr>
<td>CAM023</td>
<td>Access Point #3</td>
<td>South Padre Island</td>
<td>TX147297</td>
<td>26.14553</td>
<td>-97.16955</td>
</tr>
<tr>
<td>CAM024</td>
<td>Access Point #4</td>
<td>South Padre Island</td>
<td>TX282282</td>
<td>26.15687</td>
<td>-97.17103</td>
</tr>
<tr>
<td>CAM025</td>
<td>Atwood Park</td>
<td>South Padre Island</td>
<td>TX841900</td>
<td>26.16531</td>
<td>-97.17195</td>
</tr>
<tr>
<td>CAM026</td>
<td>Atwood Park</td>
<td>South Padre Island</td>
<td>TX841900</td>
<td>26.16918</td>
<td>-97.17256</td>
</tr>
<tr>
<td>CAM027</td>
<td>Access Pt. #6 Entrance</td>
<td>South Padre Island</td>
<td>TX810590</td>
<td>26.20793</td>
<td>-97.17754</td>
</tr>
<tr>
<td>CAM028</td>
<td>Access Pt. #6 North</td>
<td>South Padre Island</td>
<td>TX810590</td>
<td>26.22183</td>
<td>-97.18013</td>
</tr>
<tr>
<td>CAM029</td>
<td>Bay Access #2</td>
<td>South Padre Island</td>
<td>TX229010</td>
<td>26.14279</td>
<td>-97.17829</td>
</tr>
<tr>
<td>CAM030</td>
<td>SPI – Isla Grand Beach Resort</td>
<td>South Padre Island</td>
<td>TX868582</td>
<td>26.0887</td>
<td>-97.16062</td>
</tr>
</tbody>
</table>
Galveston County has approximately 56 miles of gulf coast shoreline, of which 53 miles is accessible as a primary contact recreational beach. Fifty-two stations will be sampled. One of these beaches is on the mainland at the Texas City Dike, which is the only site on the mainland where significant contact recreation occurs.

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Station Name</th>
<th>Beach Name</th>
<th>Beach ID</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAL001</td>
<td>San Luis Pass Toll Bridge</td>
<td>West End Galveston</td>
<td>TX822495</td>
<td>29.08627</td>
<td>-95.1112</td>
</tr>
<tr>
<td>GAL003</td>
<td>West Beach</td>
<td>West End Galveston</td>
<td>TX822495</td>
<td>29.11716</td>
<td>-95.07509</td>
</tr>
<tr>
<td>GAL005</td>
<td>Terramar Beach</td>
<td>West End Galveston</td>
<td>TX767833</td>
<td>29.12855</td>
<td>-95.05833</td>
</tr>
<tr>
<td>GAL007</td>
<td>Sea Isle South</td>
<td>West End Galveston</td>
<td>TX767833</td>
<td>29.1405</td>
<td>-95.03942</td>
</tr>
<tr>
<td>Station ID</td>
<td>Station Name</td>
<td>Beach Name</td>
<td>Beach ID</td>
<td>Latitude</td>
<td>Longitude</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------</td>
<td>---------------------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>GAL013</td>
<td>16 Mile Rd.</td>
<td>West End Galveston</td>
<td>TX239942</td>
<td>29.17529</td>
<td>-94.98273</td>
</tr>
<tr>
<td>GAL014</td>
<td>Jamaica Beach South</td>
<td>West End Galveston</td>
<td>TX974690</td>
<td>29.18171</td>
<td>-94.97177</td>
</tr>
<tr>
<td>GAL017</td>
<td>GISP #2</td>
<td>West End Galveston</td>
<td>TX334226</td>
<td>29.18816</td>
<td>-94.96087</td>
</tr>
<tr>
<td>GAL019</td>
<td>GISP #4</td>
<td>West End Galveston</td>
<td>TX334226</td>
<td>29.19193</td>
<td>-94.95468</td>
</tr>
<tr>
<td>GAL021</td>
<td>GISP #6 - Bayside</td>
<td>West End Galveston</td>
<td>TX226514</td>
<td>29.21313</td>
<td>-94.95367</td>
</tr>
<tr>
<td>GAL022</td>
<td>13 Mile Rd.</td>
<td>West End Galveston</td>
<td>TX751320</td>
<td>29.19537</td>
<td>-94.9488</td>
</tr>
<tr>
<td>GAL023</td>
<td>Pirates Drive</td>
<td>West End Galveston</td>
<td>TX751320</td>
<td>29.20126</td>
<td>-94.93818</td>
</tr>
<tr>
<td>GAL024</td>
<td>Buccaneer Blvd.</td>
<td>West End Galveston</td>
<td>TX751320</td>
<td>29.20388</td>
<td>-94.93399</td>
</tr>
<tr>
<td>GAL025</td>
<td>11 Mile Rd.</td>
<td>West End Galveston</td>
<td>TX751320</td>
<td>29.20865</td>
<td>-94.92628</td>
</tr>
<tr>
<td>GAL026</td>
<td>Pabst Rd.</td>
<td>West End Galveston</td>
<td>TX163187</td>
<td>29.21545</td>
<td>-94.91443</td>
</tr>
<tr>
<td>GAL027</td>
<td>Spanish Grant Blvd.</td>
<td>West End Galveston</td>
<td>TX163187</td>
<td>29.21878</td>
<td>-94.90981</td>
</tr>
<tr>
<td>GAL028</td>
<td>Hershey Beach</td>
<td>West End Galveston</td>
<td>TX163187</td>
<td>29.22095</td>
<td>-94.9048</td>
</tr>
<tr>
<td>GAL030</td>
<td>8 Mile Rd.</td>
<td>West End Galveston</td>
<td>TX393353</td>
<td>29.23476</td>
<td>-94.88272</td>
</tr>
<tr>
<td>GAL032</td>
<td>7 Mile Rd.</td>
<td>West End Galveston</td>
<td>TX393353</td>
<td>29.24066</td>
<td>-94.87286</td>
</tr>
<tr>
<td>GAL034</td>
<td>60th St.</td>
<td>Galveston Seawall</td>
<td>TX486021</td>
<td>29.26696</td>
<td>-94.82532</td>
</tr>
<tr>
<td>GAL035</td>
<td>57th St.</td>
<td>Galveston Seawall</td>
<td>TX486021</td>
<td>29.26888</td>
<td>-94.82221</td>
</tr>
<tr>
<td>GAL036</td>
<td>San Luis Resort</td>
<td>Galveston Seawall</td>
<td>TX486021</td>
<td>29.27126</td>
<td>-94.81735</td>
</tr>
<tr>
<td>GAL037</td>
<td>Fort Crockett Seawall Park West</td>
<td>Galveston Seawall</td>
<td>TX214299</td>
<td>29.27365</td>
<td>-94.8137</td>
</tr>
<tr>
<td>GAL038</td>
<td>Fort Crockett Seawall Park</td>
<td>Galveston Seawall</td>
<td>TX214299</td>
<td>29.27519</td>
<td>-94.81034</td>
</tr>
<tr>
<td>GAL039</td>
<td>Beach Plaza Shopping Center</td>
<td>Galveston Seawall</td>
<td>TX214299</td>
<td>29.27728</td>
<td>-94.80866</td>
</tr>
<tr>
<td>GAL040</td>
<td>39th St.</td>
<td>Galveston Seawall</td>
<td>TX214299</td>
<td>29.27915</td>
<td>-94.80427</td>
</tr>
<tr>
<td>GAL041</td>
<td>35th St.</td>
<td>Galveston Seawall</td>
<td>TX214299</td>
<td>29.28128</td>
<td>-94.8005</td>
</tr>
<tr>
<td>GAL042</td>
<td>Between 31st and 32nd St</td>
<td>Galveston Seawall</td>
<td>TX214299</td>
<td>29.28374</td>
<td>-94.79664</td>
</tr>
<tr>
<td>GAL044</td>
<td>Flagship Hotel/27th St.</td>
<td>Galveston Seawall</td>
<td>TX710697</td>
<td>29.28679</td>
<td>-94.7919</td>
</tr>
<tr>
<td>GAL045</td>
<td>East of Flagship Fishing Pier</td>
<td>Galveston Seawall</td>
<td>TX710697</td>
<td>29.28874</td>
<td>-94.78967</td>
</tr>
<tr>
<td>GAL046</td>
<td>18th/19th Streets</td>
<td>Galveston Seawall</td>
<td>TX710697</td>
<td>29.29295</td>
<td>-94.78423</td>
</tr>
<tr>
<td>GAL047</td>
<td>14th/15th Streets</td>
<td>Galveston Seawall</td>
<td>TX710697</td>
<td>29.2964</td>
<td>-94.77982</td>
</tr>
<tr>
<td>GAL048</td>
<td>Stewart Beach #1</td>
<td>Stewart Beach</td>
<td>TX451421</td>
<td>29.30384</td>
<td>-94.77123</td>
</tr>
<tr>
<td>GAL049</td>
<td>Stewart Beach #2</td>
<td>Stewart Beach</td>
<td>TX451421</td>
<td>29.30501</td>
<td>-94.76959</td>
</tr>
<tr>
<td>GAL050</td>
<td>Stewart Beach #3</td>
<td>Stewart Beach</td>
<td>TX451421</td>
<td>29.30622</td>
<td>-94.7679</td>
</tr>
<tr>
<td>GAL053</td>
<td>East Beach/Apffel Park #2</td>
<td>Apffel Park</td>
<td>TX327206</td>
<td>29.32732</td>
<td>-94.7342</td>
</tr>
<tr>
<td>GAL055</td>
<td>East Beach/Apffel Park #4</td>
<td>Apffel Park</td>
<td>TX327206</td>
<td>29.33056</td>
<td>-94.72905</td>
</tr>
<tr>
<td>GAL058</td>
<td>Retilion Road</td>
<td>Port Bolivar</td>
<td>TX832087</td>
<td>29.38242</td>
<td>-94.72333</td>
</tr>
<tr>
<td>GAL059</td>
<td>Magnolia Lane</td>
<td>Crystal Beach</td>
<td>TX426780</td>
<td>29.4091</td>
<td>-94.702</td>
</tr>
<tr>
<td>GAL061</td>
<td>Helen Blvd.</td>
<td>Crystal Beach</td>
<td>TX426780</td>
<td>29.42238</td>
<td>-94.68474</td>
</tr>
<tr>
<td>GAL062</td>
<td>O'Neil Rd.</td>
<td>Crystal Beach</td>
<td>TX669225</td>
<td>29.43652</td>
<td>-94.66178</td>
</tr>
<tr>
<td>GAL064</td>
<td>Crystal Beach Road</td>
<td>Crystal Beach</td>
<td>TX860495</td>
<td>29.4507</td>
<td>-94.63347</td>
</tr>
<tr>
<td>GAL065</td>
<td>Gulf Shores Drive</td>
<td>Crystal Beach</td>
<td>TX860495</td>
<td>29.45336</td>
<td>-94.62802</td>
</tr>
<tr>
<td>GAL066</td>
<td>Alberdie Road - Emerald Beach #2</td>
<td>Crystal Beach</td>
<td>TX392019</td>
<td>29.45588</td>
<td>-94.62285</td>
</tr>
<tr>
<td>GAL067</td>
<td>Barbados Rd</td>
<td>Crystal Beach</td>
<td>TX392019</td>
<td>29.45846</td>
<td>-94.61719</td>
</tr>
<tr>
<td>Station ID</td>
<td>Station Name</td>
<td>Beach Name</td>
<td>Beach ID</td>
<td>Latitude</td>
<td>Longitude</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>GAL068</td>
<td>Gilmore Street Access</td>
<td>Crystal Beach</td>
<td>TX392019</td>
<td>29.46156</td>
<td>-94.61034</td>
</tr>
<tr>
<td>GAL069</td>
<td>Center Road</td>
<td>Crystal Beach</td>
<td>TX392019</td>
<td>29.46341</td>
<td>-94.60601</td>
</tr>
<tr>
<td>GAL070</td>
<td>Driftwood</td>
<td>Crystal Beach</td>
<td>TX236175</td>
<td>29.46722</td>
<td>-94.59805</td>
</tr>
<tr>
<td>GAL074</td>
<td>Deens Street</td>
<td>Rollover Pass</td>
<td>TX341767</td>
<td>29.50659</td>
<td>-94.50093</td>
</tr>
<tr>
<td>GAL075</td>
<td>Church street</td>
<td>Rollover Pass</td>
<td>TX284256</td>
<td>29.50775</td>
<td>-94.4972</td>
</tr>
<tr>
<td>GAL076</td>
<td>Gayle Street</td>
<td>Rollover Pass</td>
<td>TX284256</td>
<td>29.50925</td>
<td>-94.49357</td>
</tr>
<tr>
<td>GAL077</td>
<td>Beaumont Ave.</td>
<td>Rollover Pass</td>
<td>TX284256</td>
<td>29.51066</td>
<td>-94.4902</td>
</tr>
<tr>
<td>GAL082</td>
<td>Texas City Dike</td>
<td>Texas City Dike</td>
<td>TX164090</td>
<td>29.3695</td>
<td>-94.82283</td>
</tr>
</tbody>
</table>

![Map of Galveston County beaches](image-url)
GALVESTON COUNTY

![Map of Galveston County with Beach Watch Sampling Stations](image)

Gulf of Mexico

Apffel Park
Texas Beach Watch Sampling Stations

GALVESTON COUNTY

TEXAS BEACH WATCH QAPP
September 2021
Page 56
HARRIS COUNTY

Local Entity/Contractor
ATC Group Services LLC
3626 Westchase Drive
Houston, TX 77042
(713)-343-4483
http://www.atcassociates.com

Project Manager
Timothy L. Craft, Project Manager
ATC Group Services, LLC - Houston
3626 Westchase Drive
Houston, TX 77042
(713)-360-8029
Gerald.ruiz@cardno.com

Laboratory
EMSL Laboratories - Houston
5950 Fairbanks North Houston Rd
Houston, TX 77040
(713)-686-3635
houstonlab@emsl.com

Analysis Method
Enterolert™

Local Government Contacts
Adrian Garcia, Commissioner
Harris County, Precinct 2
1001 Preston, Rm.924
Houston, TX 77002
(713) 755-6220
adrian.garcia@pct2.hctx.net

Kyle Kelley, Superintendent of Parks
Harris County, Precinct 2
3100 Federal Rd.
Houston, Texas 77015
(281) 274-2070
Kyle.Kelley@pct2.hctx.net

Harris County has one recreational beach area that is sampled. Sylvan Beach, on Galveston Bay, is a county park located in the City of LaPorte, Texas. Two stations are monitored.

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Station Name</th>
<th>Beach Name</th>
<th>Beach ID</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAR001</td>
<td>Sylvan Beach - North</td>
<td>Sylvan Beach Park</td>
<td>TX412536</td>
<td>29.655058</td>
<td>-95.007969</td>
</tr>
<tr>
<td>HAR002</td>
<td>Sylvan Beach - South</td>
<td>Sylvan Beach Park</td>
<td>TX412536</td>
<td>29.652436</td>
<td>-95.009461</td>
</tr>
</tbody>
</table>
JEFFERSON COUNTY

Local Entity/Contractor
Lamar University
P. O. Box 10037
Beaumont, TX 77710-0037

Laboratory
Lamar University
P. O. Box 10037
Beaumont, TX 77710-0037

Project Manager
Dr. Ashwini Kucknoor, Department of Biology
Lamar University
P.O. Box 10037
Beaumont, TX 77710-0037
(409) 880-8260
ashwini.kucknoor@lamar.edu

Analysis Method
Enterolert ™

Local Government Contacts
Jeff Branick, County Judge
Jefferson County
1149 Pearl Street
Beaumont, Texas 77701
(409) 835-8466
(409) 839-2311 - Fax
jbranick@co.jefferson.tx.us
http://www.co.jefferson.tx.us/

Douglas Head, Refuge Manager
McFaddin National Wildlife Refuge
P.O. Box 358
Sabine Pass, Texas 77655
(409) 971-2909
(409) 971-2104 - Fax
fw2_rw_mcfaddin@fws.gov
douglas_head@fws.gov

Michael Sinegal, Commissioner
Jefferson County Precinct No. 3
Jefferson County Sub-Courthouse
525 Lakeshore Drive
Port Arthur, TX 77640
(409) 983-8300
(409) 983-8303 - Fax
msinegal@co.jefferson.tx.us

Fred Jackson, Assistant to the County Judge
Jefferson County
1149 Pearl Street
Beaumont, Texas 77701
(409) 835-8507
fjackson@co.jefferson.tx.us

Nathan Londenberg, Park Superintendent
Sea Rim State Park
PO Box 1066
Sabine Pass, TX 77655-1066
(409) 971-2559
(409) 960-1324 - Mobile
Nathan.Londenberg@tpwd.texas.gov

Sea Rim State Park
PO Box 1066
Sabine Pass, TX 77655-1066
(409) 971-2559
searim.txparks@tpwd.texas.gov
http://www.tpwd.state.tx.us/state-parks/sea-rim
Jefferson County has approximately 33 miles of gulf coast shoreline, of which 24.2 miles is accessible as a primary contact recreational beach. The public most heavily uses two beach areas. These are Sea Rim State Park with three locations and McFaddin National Wildlife Refuge with six locations. Although federal lands are not required to be monitored by the state, in this case, the refuge ends at the line of vegetation, with the County controlling the beach area.

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Station Name</th>
<th>Beach Name</th>
<th>Beach ID</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>JEF001*</td>
<td>McFaddin NWR #1</td>
<td>McFaddin NWR</td>
<td>TX831676</td>
<td>29.65395</td>
<td>-94.11387</td>
</tr>
<tr>
<td>JEF002*</td>
<td>McFaddin NWR #2</td>
<td>McFaddin NWR</td>
<td>TX831676</td>
<td>29.65917</td>
<td>-94.09843</td>
</tr>
<tr>
<td>JEF003*</td>
<td>McFaddin NWR #3</td>
<td>McFaddin NWR</td>
<td>TX831676</td>
<td>29.66214</td>
<td>-94.08842</td>
</tr>
<tr>
<td>JEF004*</td>
<td>McFaddin NWR #4</td>
<td>McFaddin NWR</td>
<td>TX831676</td>
<td>29.66428</td>
<td>-94.08175</td>
</tr>
<tr>
<td>JEF005*</td>
<td>McFaddin NWR #5</td>
<td>McFaddin NWR</td>
<td>TX831676</td>
<td>29.66617</td>
<td>-94.07483</td>
</tr>
<tr>
<td>JEF006</td>
<td>McFaddin NWR #6</td>
<td>McFaddin NWR</td>
<td>TX831676</td>
<td>29.66766</td>
<td>-94.06975</td>
</tr>
<tr>
<td>JEF007</td>
<td>Sea Rim State Park-West</td>
<td>Sea Rim State Park</td>
<td>TX095025</td>
<td>29.67153</td>
<td>-94.05448</td>
</tr>
<tr>
<td>JEF008</td>
<td>Sea Rim State Park-Middle</td>
<td>Sea Rim State Park</td>
<td>TX095025</td>
<td>29.67418</td>
<td>-94.04306</td>
</tr>
<tr>
<td>JEF009</td>
<td>Sea Rim State Park-East</td>
<td>Sea Rim State Park</td>
<td>TX095025</td>
<td>29.67634</td>
<td>-94.03225</td>
</tr>
<tr>
<td>JEF010</td>
<td>Sea Rim State Park – West End</td>
<td>Sea Rim State Park</td>
<td>TX095025</td>
<td>29.66947</td>
<td>-94.06204</td>
</tr>
<tr>
<td>JEF011</td>
<td>Sea Rim State Park – Camp 1</td>
<td>Sea Rim State Park</td>
<td>TX095025</td>
<td>29.67326</td>
<td>-94.04573</td>
</tr>
<tr>
<td>JEF012</td>
<td>Sea Rim State Park – Park 1</td>
<td>Sea Rim State Park</td>
<td>TX095025</td>
<td>29.67504</td>
<td>-94.03771</td>
</tr>
</tbody>
</table>

* Sites received dormant status due to ongoing beach renourishment project
MATAGORDA COUNTY

Local Entity/Contractor
ATC Group Services LLC
3626 Westchase Drive
Houston, TX 77042
(713)-343-4482
www.atcgroupservices.com

Project Manager
Timothy L. Craft, Project Manager
ATC Group Services, LLC - Houston
3626 Westchase Drive
Houston, TX 77042
(832)-794-8832
tim.craft@atcgs.com

Laboratory
EMSL Laboratories - Houston
5950 Fairbanks North Houston Rd
Houston, TX 77040
(713)-686-3635
houstonlab@emsl.com

Analysis Method
Enterolert™

Local Government Contacts
Lisa Krobot, Director
Matagorda County Environmental Health
2200 7th St.
Bay City, TX 77414-5203
(979) 244-2717
(979)244-1967 – Fax
lkrobot@co.matagorda.tx.us
http://www.co.matagorda.tx.us/page/matagorda.EnvironmentalHealth

David Kocurek, City Manager
City of Palacios
P.O. Box 845
Palacios, TX 77465-0845
(361) 972-3605
(361) 972-6555 – Fax
dkocurek@cityofpalacios.org
www.cityofpalacios.org

Kent Pollard, Commissioner
Matagorda County, Precinct 2
P. O. Box 571
Matagorda, TX 77457
(979) 863-7861
(979) 863-2155 – Fax
pct2@co.matagorda.tx.us
Matagorda County has three beach areas that will be sampled. The beaches are Sargent Beach, Matagorda Jetty Park, and Palacios Pavilion. Nine stations will be monitored at these beaches.

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Station Name</th>
<th>Beach Name</th>
<th>Beach ID</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT001</td>
<td>Palacios Pavilion West</td>
<td>Palacios</td>
<td>TX784742</td>
<td>28.698056</td>
<td>-96.213611</td>
</tr>
<tr>
<td>MAT002</td>
<td>Palacios Pavilion East</td>
<td>Palacios</td>
<td>TX784742</td>
<td>28.697778</td>
<td>-96.211667</td>
</tr>
<tr>
<td>MAT003</td>
<td>Jetty Park #1</td>
<td>East Matagorda Peninsula</td>
<td>TX756029</td>
<td>28.597222</td>
<td>-95.976111</td>
</tr>
<tr>
<td>MAT004</td>
<td>Jetty Park #2</td>
<td>East Matagorda Peninsula</td>
<td>TX756029</td>
<td>28.599167</td>
<td>-95.971389</td>
</tr>
<tr>
<td>MAT005</td>
<td>Jetty Park #3</td>
<td>East Matagorda Peninsula</td>
<td>TX756029</td>
<td>28.601389</td>
<td>-95.965833</td>
</tr>
<tr>
<td>MAT006</td>
<td>Jetty Park #4</td>
<td>East Matagorda Peninsula</td>
<td>TX756029</td>
<td>28.603611</td>
<td>-95.960556</td>
</tr>
<tr>
<td>MAT007</td>
<td>Sargent Beach West</td>
<td>Sargent Beach</td>
<td>TX455545</td>
<td>28.765278</td>
<td>-95.623333</td>
</tr>
<tr>
<td>MAT008</td>
<td>Sargent Beach</td>
<td>Sargent Beach</td>
<td>TX455545</td>
<td>28.769167</td>
<td>-95.615556</td>
</tr>
<tr>
<td>MAT009</td>
<td>Sargent Co Park</td>
<td>Sargent Beach</td>
<td>TX455545</td>
<td>28.786389</td>
<td>-95.581389</td>
</tr>
</tbody>
</table>
Local Entity/Contractor
Corpus Christi-Nueces County Public Health District
1702 Horne Road
Corpus Christi, Texas 78416
http://www.cctexas.com/government/health-district/index

Laboratory
Raymond Martinez
Lab Quality Coordinator
Corpus Christi-Nueces County Public Health District
1702 Horne Road
Corpus Christi, Texas 78416
(361) 826-1331
(361) 826-7217 - Fax
raymondm@cctexas.com

Analysis Method
Enterolert™

Local Government Contacts
Ms. Annette Rodriguez, MPh., Director
Corpus Christi-Nueces County Public Health District
1702 Horne Road
Corpus Christi, TX 78416
(361) 851-7203
annetter@cctexas.com

Kristen Talamantez, Director Nueces County
Commissioner’s Court Administration
901 Leopard St.
Corpus Christi, TX 78401-3600
(361) 888-0878
kristen.talamantez@nuecesco.com

Project Manager
Angela Flores, BS,M(ASCP)cm
Laboratory Manager
Protection Division
Corpus Christi-Nueces County Public Health Dist.
1702 Horne Road
Corpus Christi, Texas 78416
(361) 826-7218
(361) 826-7217 - Fax
angelaf@cctexas.com

Emilie Port, DO, MPH Regional Medical Director
Texas Department of State Health Services, Region 11
601 West Sesame Drive
Harlingen, Texas 78550,
(956) 423-0130
(956) 444-3298 - Fax
emilie.prot@dshs.state.tx.us

David Parsons, City Manager
City of Port Aransas
710 W. Ave. A
Port Aransas, TX 78373
(361) 749-4111
(361) 749-4723 – Fax
davidparsons@cityofportaransas.org
pat@cityofportaransas.org
www.cityofportaransas.org/
NUECES COUNTY

Local Government Contacts
Jermel Stevenson, Director
Corpus Christi Parks & Recreation
City of Corpus Christi
P.O. Box 9277
Corpus Christi, Texas 78469
(361) 826-3464
(361) 826-3864 - Fax
JermelS@cctexas.com
http://www.cctexas.com/government/parks-recreation/index

Scott Taylor, Park Superintendent
Mustang Island State Park
P. O. Box 326
Port Aransas, TX 78373-0326
(361) 749-5246
Scott.Taylor@tpwd.texas.gov
http://www.tpwd.state.tx.us/state-parks/mustang-island

Scott Cross, Director
Nueces County Parks & Recreation Department
P.O. Box 18608
Corpus Christi, TX 78480-8608
(361) 949-8121
(361) 749-6117 – Port Aransas Office
scott.cross@co.nueces.tx.us

Daren Gurley, Gulf Beach & Natural Resources Superintendent
City of Corpus Christi
17959 Hwy 361
Corpus Christi, TX 78373
(361) 826-1934
charlesgu@cctexas.com

Nueces County has a very extensive beach area both along the Gulf of Mexico and within Corpus Christi Bay. Twenty-four stations on the Gulf and twenty-two stations on the Bay will be sampled.

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Station Name</th>
<th>Beach Name</th>
<th>Beach ID</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUE001</td>
<td>Port Aransas #1</td>
<td>Port Aransas</td>
<td>TX722300</td>
<td>27.83317</td>
<td>-97.04689</td>
</tr>
<tr>
<td>NUE002</td>
<td>Port Aransas #2</td>
<td>Port Aransas</td>
<td>TX722300</td>
<td>27.83144</td>
<td>-97.04943</td>
</tr>
<tr>
<td>NUE003</td>
<td>Port Aransas #3</td>
<td>Port Aransas</td>
<td>TX722300</td>
<td>27.82847</td>
<td>-97.05243</td>
</tr>
<tr>
<td>NUE004</td>
<td>Port Aransas #4</td>
<td>Port Aransas</td>
<td>TX722300</td>
<td>27.82637</td>
<td>-97.05472</td>
</tr>
<tr>
<td>NUE005</td>
<td>Port Aransas #5</td>
<td>Port Aransas</td>
<td>TX315916</td>
<td>27.82207</td>
<td>-97.05867</td>
</tr>
<tr>
<td>NUE006</td>
<td>Port Aransas #6</td>
<td>Port Aransas</td>
<td>TX315916</td>
<td>27.8154</td>
<td>-97.06501</td>
</tr>
<tr>
<td>NUE007</td>
<td>Mustang Island SP #1</td>
<td>Mustang Island</td>
<td>TX551380</td>
<td>27.67892</td>
<td>-97.1647</td>
</tr>
<tr>
<td>NUE008</td>
<td>Mustang Island SP #2</td>
<td>Mustang Island</td>
<td>TX551380</td>
<td>27.67422</td>
<td>-97.16769</td>
</tr>
<tr>
<td>NUE009</td>
<td>Mustang Island SP #3</td>
<td>Mustang Island</td>
<td>TX551380</td>
<td>27.67079</td>
<td>-97.17082</td>
</tr>
<tr>
<td>NUE010</td>
<td>Mustang Island SP #4</td>
<td>Mustang Island</td>
<td>TX551380</td>
<td>27.66642</td>
<td>-97.17331</td>
</tr>
<tr>
<td>NUE012</td>
<td>Mustang Island SP #6</td>
<td>Mustang Island</td>
<td>TX551380</td>
<td>27.64334</td>
<td>-97.18714</td>
</tr>
<tr>
<td>NUE013</td>
<td>J.P. Luby Park #1</td>
<td>JP Luby Park</td>
<td>TX607336</td>
<td>27.63635</td>
<td>-97.19066</td>
</tr>
<tr>
<td>NUE014</td>
<td>J.P. Luby Park #2</td>
<td>JP Luby Park</td>
<td>TX607336</td>
<td>27.62909</td>
<td>-97.19497</td>
</tr>
<tr>
<td>NUE015</td>
<td>J.P. Luby Park #3</td>
<td>JP Luby Park</td>
<td>TX607336</td>
<td>27.62252</td>
<td>-97.19879</td>
</tr>
<tr>
<td>NUE016</td>
<td>J.P. Luby Park #4</td>
<td>JP Luby Park</td>
<td>TX607336</td>
<td>27.61649</td>
<td>-97.20199</td>
</tr>
<tr>
<td>NUE017</td>
<td>Bob Hall Pier/Seawall #1</td>
<td>Padre Balli Park</td>
<td>TX314643</td>
<td>27.60959</td>
<td>-97.20562</td>
</tr>
<tr>
<td>NUE018</td>
<td>Bob Hall Pier/Seawall #2</td>
<td>Padre Balli Park</td>
<td>TX314643</td>
<td>27.6047</td>
<td>-97.20822</td>
</tr>
<tr>
<td>NUE019</td>
<td>Bob Hall Pier/Seawall #3</td>
<td>Padre Balli Park</td>
<td>TX314643</td>
<td>27.59873</td>
<td>-97.21126</td>
</tr>
<tr>
<td>NUE020</td>
<td>Bob Hall Pier/Seawall #4</td>
<td>Padre Balli Park</td>
<td>TX314643</td>
<td>27.59484</td>
<td>-97.21354</td>
</tr>
<tr>
<td>NUE021</td>
<td>Bob Hall Pier/Seawall #5</td>
<td>Padre Balli Park</td>
<td>TX314643</td>
<td>27.58956</td>
<td>-97.21601</td>
</tr>
<tr>
<td>Station ID</td>
<td>Station Name</td>
<td>Beach Name</td>
<td>Beach ID</td>
<td>Latitude</td>
<td>Longitude</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>NUE022</td>
<td>Bob Hall Pier/Seawall #6</td>
<td>Padre Balli Park</td>
<td>TX314643</td>
<td>27.58575</td>
<td>-97.21811</td>
</tr>
<tr>
<td>NUE023</td>
<td>Bob Hall Pier/Seawall #7</td>
<td>Padre Balli Park</td>
<td>TX314643</td>
<td>27.58271</td>
<td>-97.21966</td>
</tr>
<tr>
<td>NUE024</td>
<td>Bob Hall Pier/Seawall #8</td>
<td>Padre Balli Park</td>
<td>TX314643</td>
<td>27.57988</td>
<td>-97.22107</td>
</tr>
<tr>
<td>NUE025</td>
<td>University Beach</td>
<td>Ocean Drive</td>
<td>TX149569</td>
<td>27.71535</td>
<td>-97.32116</td>
</tr>
<tr>
<td>NUE026</td>
<td>Poenisch Park</td>
<td>Poenisch Park</td>
<td>TX682648</td>
<td>27.72406</td>
<td>-97.34344</td>
</tr>
<tr>
<td>NUE028</td>
<td>Ropes Park #2</td>
<td>Ropes Park</td>
<td>TX821303</td>
<td>27.75279</td>
<td>-97.37587</td>
</tr>
<tr>
<td>NUE029</td>
<td>Ropes Park #3</td>
<td>Ropes Park</td>
<td>TX821303</td>
<td>27.75477</td>
<td>-97.37623</td>
</tr>
<tr>
<td>NUE031</td>
<td>Cole Park#2</td>
<td>Cole Park</td>
<td>TX259473</td>
<td>27.76762</td>
<td>-97.3845</td>
</tr>
<tr>
<td>NUE032</td>
<td>Cole Park#3</td>
<td>Cole Park</td>
<td>TX259473</td>
<td>27.76991</td>
<td>-97.38717</td>
</tr>
<tr>
<td>NUE033</td>
<td>Cole Park#4</td>
<td>Cole Park</td>
<td>TX259473</td>
<td>27.77199</td>
<td>-97.38829</td>
</tr>
<tr>
<td>NUE035</td>
<td>Cole Park#6</td>
<td>Cole Park</td>
<td>TX259473</td>
<td>27.77545</td>
<td>-97.39112</td>
</tr>
<tr>
<td>NUE036</td>
<td>McGee Beach #1</td>
<td>McGee Beach</td>
<td>TX536781</td>
<td>27.78406</td>
<td>-97.39376</td>
</tr>
<tr>
<td>NUE037</td>
<td>McGee Beach #2</td>
<td>McGee Beach</td>
<td>TX536781</td>
<td>27.78589</td>
<td>-97.39332</td>
</tr>
<tr>
<td>NUE038</td>
<td>North Beach - Coastal</td>
<td>North Beach</td>
<td>TX546628</td>
<td>27.81751</td>
<td>-97.38943</td>
</tr>
<tr>
<td>NUE039</td>
<td>North Beach - Breakers</td>
<td>North Beach</td>
<td>TX546628</td>
<td>27.82167</td>
<td>-97.38636</td>
</tr>
<tr>
<td>NUE040</td>
<td>North Beach - Gulfspr</td>
<td>North Beach</td>
<td>TX546628</td>
<td>27.82666</td>
<td>-97.38307</td>
</tr>
<tr>
<td>NUE041</td>
<td>North Beach - Gulden</td>
<td>North Beach</td>
<td>TX546628</td>
<td>27.83105</td>
<td>-97.37972</td>
</tr>
<tr>
<td>NUE042</td>
<td>JFK-A</td>
<td>JFK Causeway</td>
<td>TX442541</td>
<td>27.65808</td>
<td>-97.26189</td>
</tr>
<tr>
<td>NUE044</td>
<td>Park Road 22</td>
<td>Packery Channel Park</td>
<td>TX227625</td>
<td>27.63041</td>
<td>-97.22514</td>
</tr>
<tr>
<td>NUE045</td>
<td>Corpus Christi Marina - South</td>
<td>Corpus Christi Marina</td>
<td>TX305317</td>
<td>27.79056</td>
<td>-97.39167</td>
</tr>
<tr>
<td>NUE046</td>
<td>Corpus Christi Marina - Center</td>
<td>Corpus Christi Marina</td>
<td>TX305317</td>
<td>27.79333</td>
<td>-97.39056</td>
</tr>
<tr>
<td>NUE047</td>
<td>Corpus Christi Marina - North</td>
<td>Corpus Christi Marina</td>
<td>TX305317</td>
<td>27.79667</td>
<td>-97.38778</td>
</tr>
<tr>
<td>NUE048</td>
<td>Mustang Island</td>
<td>Mustang Island</td>
<td>TX396020</td>
<td>27.70333</td>
<td>-97.14972</td>
</tr>
<tr>
<td>NUE049</td>
<td>Lighthouse Lake</td>
<td>Lighthouse Lakes Kayak Trail</td>
<td>TX538780</td>
<td>27.860833</td>
<td>-97.082778</td>
</tr>
<tr>
<td>NUE050</td>
<td>Emerald Beach</td>
<td>Emerald Beach</td>
<td>TX199413</td>
<td>27.781611</td>
<td>-97.393444</td>
</tr>
</tbody>
</table>
Laguna Shores, NUE043, has been reclassified as a Tier 2 beach as of 8/31/2014 and is no longer sampled.
San Patricio County has one station at a recreational beach that is being sampled. The location is primarily utilized for wade fishing and a kayak launch.

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Station Name</th>
<th>Beach Name</th>
<th>Beach ID</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAN001</td>
<td>Nueces Bay Causeway #3</td>
<td>Highway 35 - Nueces Bay Causeway</td>
<td>TX139394</td>
<td>27.854111</td>
<td>-97.358056</td>
</tr>
</tbody>
</table>
PROJECT MANAGER SIGNATURE PAGE

By my signature below, I attest that I have read and understand the Quality Assurance Project Plan for _________________ County.

__

Project Manager

__

Project Manager (Print Name)

__

Date
APPENDIX E

CONTRACTOR AND DATA REVIEW TEMPLATE
The following review was conducted on [insert date] by (insert name), Quality Assurance Officer, Texas Beach Watch Program during the normal sampling conducted by [insert lab tech name], [insert name of laboratory], at various sampling points in [insert county name] County. Sample processing was observed at the laboratory. [Insert lab tech name] performed the sample processing.

Questions/Documentation

<table>
<thead>
<tr>
<th>Local Program Management</th>
<th>Yes</th>
<th>No</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does the sub recipient have a training manual for new hires on procedures, protocol, etc? Has a copy been provided to the Beach Watch Program?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are both hard copies and electronic files containing field and laboratory data will be stored for three years?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is the Beach Watch Coordinator contacted if there are sampling difficulties?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field Sampling Procedures</th>
<th>Yes</th>
<th>No</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does sample collection follow the schedule as outlined in the work plan? The required collection period is on Tuesday with Monday and Wednesday as alternate days (Multiple days may be needed to collect all of the samples).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample Collection Containers</th>
<th>Yes</th>
<th>No</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are samples collected in sterilized polypropylene bottles with a volume of at least 125 ml, but no more than 1000 ml?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are collection bottles kept sealed until immediately prior to taking the sample?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample Collection Depth and Location</th>
<th>Yes</th>
<th>No</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are the samples being collected at the appropriate standing depth? (Knee depth (~2 ft), this may change if the majority of the recreational activity occurs in a significantly different depth or if the distance to achieve a sampling depth is greater than 50 meters from the water line.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are samples collected as near as possible to the access points of a beach?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample Handling and Labeling</th>
<th>Yes</th>
<th>No</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is each sample bottle properly labeled with the following information: date and time of collection, sampler’s name, sample letters, and station number?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are sample-holding times (of no longer than six hours from collection to delivery) being met?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are samples being maintained at a temperature of <10º Celsius (C) and stored in insulated containers during transit to the laboratory?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Questions/Documentation | Yes No | Comments
--- | --- | ---
Sample Collection Times and Frequency
- Is one sample being collected per station?
- Is sample collection occurring between sunrise and noon?
- Are field replicates being collected and analyzed by field personnel at the appropriate frequency?

Exceedances
- Is re-sampling being conducted on a daily basis when the result value exceeds the recommended standard?
- Does re-sampling occur within two hours of a count that exceeds standards (when possible)?

Recording and Chain of Custody
- Do field personnel document rainfall and tidal information to explain sample collection difficulties?
- Are Chain of Custody (COC) procedures followed whenever samples are collected, transferred, stored, and analyzed?
- Were missed sampling events (completeness <100%) explained and documented?

Laboratory Review
- Are the samples analyzed using either EPA’s Method 1600: 24-hour Membrane Filter Test or IDEXX’s Enterolert™ system?
- Does the laboratory have NELAC accreditation for Enterococci in non-potable water?

Laboratory Quality Control
- Are duplicate lab samples being conducted in the lab to verify precision? Is it being conducted for 10% of the samples?
- Is the sub recipient documenting that sterilization of lab autoclaves occurs?
- Is documentation being maintained on daily incubation temperatures?
- Is documentation being maintained on calibration of lab equipment used?
- Are testing, inspection, maintenance, and calibration of laboratory equipment being conducted as prescribed by laboratory QA manuals and as specified by each equipment manufacturer’s owner’s manual?
- Are both hard copies and electronic files containing laboratory data will be stored for three years?
Questions/Documentation

<table>
<thead>
<tr>
<th>Reporting</th>
<th>Yes No</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are the sample results being entered into the Beach Watch Database, through the web, within two hours of receiving them?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does the project manager periodically verify the completeness of field sampling records prior to data entry?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Upon review of the laboratory, the following corrective actions are recommended:

[Insert Name]
Texas Beach Watch Quality Assurance Officer
[Insert Date]

[Insert Name]
Texas Beach Watch Program Coordinator
[Insert Date]
Sample (extension) pole carriage where sample bottle is affixed using reusable cable ties or elastic bands.
Sample (extension) pole